Effects on Availability of Road Network (EARN)

International workshop on Recycling: Road construction in a post-fossil fuel society

Katerina Varveri, PhD researcher Prof. dr. Tom Scarpas

> , UDelft

Pavement Engineering, Technische Universiteit Delft

UNIKASSEL

ERSITÄT

Prague, 24-25 September 2015

Durability of WMA and RA pavements

Work Package 3: Experimental evaluation of moisture and ageing

<u>Objective:</u>

Investigate the **combined effect** of **ageing** and **moisture** damage on the **performance** of asphalt mixtures containing **RA** and **WMA additive**.

Physico-mechanical degradation mechanisms

Degradation of the **cohesive strength** of the asphalt binder

Loss of the *adhesion bond* between aggregate & asphalt binder

Moisture induced damage

Moisture diffusion

Moisture gradient driven (does not require a flow field)

 $\frac{\partial \theta}{\partial t} = \nabla (D\nabla \theta)$

Binder film

Aggregate

Pumping action (Pore pressure development)

Moisture conditioning protocol

UDelft

A. Varveri, S. Avgerinopoulos & A. Scarpas (2015). Experimental evaluation of long- and short-term moisture damage characteristics of asphalt mixtures. *Road Materials and Pavement Design*. DOI: 10.1080/14680629.2015.1066705

ARN

Moisture Induced Sensitivity Tester (MIST)

Moisture conditioning protocol

Determination of bath conditioning time

Determination of MIST cycles

Laying of site trials

Mix design

				100 90 80 90 90 90 40	Ave →Ave →Sar →Sar →Sar →Sar →Sar →Sar	erage nple 1 nple 2 nple 3 nple 4 nple 5						
Mix No.		I	Proport									
	RA	10 mm	CRF^*	Filler	Fresh Binder	Warm Mix Additive						
1	0	65.9	22.8	5.7	5.6	0	1.0 2.0	4.0	6.3 10	14	20	31.5
2	28.6	43.8	17.0	5.7	4.9	0						
3	38.1	34.4	17.1	5.7	4.7	0.3]					
4	28.6	43.8	17.0	5.7	4.9	0.3						2
					*Crushed	Rock Fines]					

Sampling scheme

TUDelft

 Phase 3 (2015):
Delivery of cores after 2yrs in service

Determination of height and bulk density

Specimen Cod	e Heig (mm	ht Bulk Dens i) (kg/m ³⁾	sity Specim	Specimen Code		Bulk Density (kg/m ³⁾
A1	34.0	2360		D1	35.0	2326
A2	38.5	5 2354	Γ	02	35.0	2302
A3	32.5	5 2319	Γ	D 3	36.0	2370
A4	34.0	2309		04	36.0	2334
A5	36.5	5 2302		D5	40.5	2357
A6	30.5	5 2368		D6	36.5	2348
A7	32.5	5 2364		70	40.0	2372
A8	31.0	2360		28	37.5	2390
A9	35.0) 2347		29	32.5	2388
A10	36 () 2348	D	010	34.5	2396
A11	32 5	5 2348		011	39.5	2400
A12	34 5	5 2392		12	36.5	2378
Δ13	33 4	5 2380		13	38.5	2364
A14	34 5	5 2018		14	35.5	2381
A15	35.6	5 2347		15	36.5	2385
A16	35.0	2376		16	39.5	2362
A10	35 (2354		17	38.5	2377
A12	34 6	2004		18	36.0	2388
Δ19	35.0	2350		19	37.5	2361
A13 A20	40 4	5 2336		20	40.5	2365
A20	40.0	5 2336		20	40.0	2305
A21	32.6	5 2347		122	36.5	2368
A22	32.5	5 2347		22	30.5	2300
A24	20.6	5 2370		23	39.5	2304
A24 A25	30.5	2342		24	40.5	2307
A25 A26	24 6	5 2307		25	34.5	2302
A20	34.5	2344		20	33.5	2390
A21	52.0	2302			33.5	2334
BI	35.5	2368		20	34.5	2371
DZ D2	34.5	2357			34.5	2392
D3 D4	36.0	23/1			35.5	2384
D4 D5	30.0	2376		54 75	33.5	2390
BJ	34.5	23/3			34.5	2370
B0 B7	37.5	2357		20	35.5	2303
D/ D0	30.0	2329		57 70	35.5	2370
BO	30.0	2330		20	37.5	2375
B3 B10	24 6	2337		-10	32.5	2307
B10	26.0	2300		11	30.5	2340
B11	25.6	2330		12	30.5	2334
B12	24 6	2001		12	34.5	2335
B13 B14	26.6	5 2301		13	35.5	2339
B14	30.0	2314		15	34.5	
B15	35.0	2344		16	37.0	2277
B10	25.0	2004		17	37.0	2265
B18	33.0	2300		18	35.5	2380
B10	40.0	2302 5 2322		19	37.5	2309
820	35.5	> 2322		20	37.5	2308
B20	34.0	> 2387		21	35.5	2030
B22	34.0	→ <u>∠</u> 360		22	370	
B23	34.5	5 2370 5 2340		23	30.5	2370
B24	34.5	> 2340) 23/1		24	37.5	2370
B25	32 4	5 2342		25	35.0	388

ITSR – Fresh (unaged) samples

ITSR – After 1 year in service

ITSR – After 2 years in service

Evolution of ITSR values

Service	Conditioning regime	ITSR (%)						
lifetime	Conditioning regime	Mixture 1	Mixture 2	Mixture 3	Mixture 4			
	3W bath	101.0	84.3	96.0	92.9			
0 yrs	6W bath	93.9	86.0	86.5	91.0			
(right after	0W Bath & MIST	95.8	100.2	100.6	98.7			
construction)	3W Bath & MIST	96.1	86.0	96.7	90.3			
	6W Bath & MIST	89.5	72.7	80.7	81.4			
	3W bath	89.5	99.3	84.8	101.9			
	6W bath	86.0	84.0	93.5	99.9			
1 yr	0W Bath & MIST	90.4	99.8	93.2	99.0			
	3W Bath & MIST	82.9	91.0	83.3	96.8			
	6W Bath & MIST	75.1	79.4	92.6	101.7			
	3W bath	99.4	111.1	78.3	76.4			
	6W bath	86.5	73.5	58.4	68.9			
2 yrs	0W Bath & MIST	89.1	98.1	78.2	77.8			
	3W Bath & MIST	89.3	91.4	75.1	81.1			
	6W Bath & MIST	81.5	74.7	57.1	69.8			

Mixture 1 (Control; 0% RA), Mixture 2 (30% RA; no WMA)

TUDelft Mixture 3 (40% RA; WMA), Mixture 4 (30% RA; WMA)

Strength degradation

	Time (wks)	Change in strength (%)											
Cond. method		Mixture 1			Mixture 2			Mixture 3			Mixture 4		
		Unaged	1 yr aged	2 yrs aged	Unaged	1 yr aged	2 yrs aged	Unaged	1 yr aged	2 yrs aged	Unaged	1 yr aged	2 yrs aged
Bath	0	na	na	na	na	na	na	na	na	na	na	na	na
	3	+1.0	-10.5	-0.6	-15.8	-0.7	+11.1	-4.1	-15.2	-21.7	-7.1	+1.9	-23.6
	6	-6.1	-14.0	-13.5	-14.0	-16.0	-26.5	-13.5	-6.5	-41.6	-9.0	-0.1	-31.1
Bath & MIST	0	-4.2	-9.6	-10.9	+0.2	-0.2	-1.9	+0.6	-6.8	-21.8	-1.3	-1.0	-22.2
	3	-3.9	-17.1	-10.7	-14.0	-9.0	-8.6	-3.3	-16.7	-24.9	-9.7	-3.2	-18.9
	6	-10.5	-24.9	-18.5	-27.3	-20.6	-25.3	-19.3	-7.4	-42.9	-18.6	+1.7	-30.2
MIST contribution*	0	-4.2	-9.6	-10.9	+0.2	-0.2	-1.9	+0.6	-6.8	-21.8	-1.3	-1.0	-22.2
	3	-4.9	-6.6	-10.3	+1.7	-8.3	-8.6	+0.7	-1.5	-3.2	-2.6	-5.1	+4.7
	6	-4.5	-10.9	-5.0	-13.3	-4.6	+1.2	-5.8	-0.9	-1.3	-9.6	+1.8	+0.9

* The effect of MIST is given as the difference between bath and bath-MIST conditioning; na: not applicable

Mixture 1 (Control; 0% RA), Mixture 2 (30% RA; no WMA) Mixture 3 (40% RA; WMA), Mixture 4 (30% RA; WMA)

Long- and short-term moisture damage

Conclusions

At construction

- **Higher reduction in strength** was observed for the **RA mixtures** than for the **HMA**.

- The **TSR** values of the **HMA** mixture were **higher** than the **RA** mixtures.

- All mixtures met the specification requirement of TSR $\ge 80\%$.

After one year in service

- the **TSR and ITS** values of the **RA mixtures improved**, indicating that the mixtures underwent a curing process that enhanced the performance with respect to moisture damage.

- the use of **WMA additive** was found to **increase** the **resistance to moisture damage**

- the **HMA** mixtures showed **poor performance** with respect to moisture as **compared** to the **freshly-laid mixtures**.

Conclusions

After two years in service

- the **HMA** mixture showed a **stable performance** with respect to moisture damage compared to the previous year.

- the performance of the **RA mixtures with WMA** additive **deteriorated** considerably. The **TSR values failed to meet the specification** requirements, indicating that the mixtures are highly susceptible to moisture damage.

- The performance of **RA mixtures without WMA** additive was **similar to** that of the **HMA** mixture.

General comments

- The ITS values increased with increasing RA content.

- A change in the amount of RA content, from **30% to 40%** did **not influence** significantly **the dry and wet ITS** and **ITSR** values.

- Overall, the **RA mixtures** were more **sensitive** to **long-term conditioning**, rather than to the application of pore pressures; the **reverse** was observed for the **HMA** mixture.

- It is recommended that **ageing** is considered when **validating a mix design** with respect to **moisture damage susceptibility**.

Effects on Availability of Road Network (EARN)

International workshop on Recycling: Road construction in a post-fossil fuel society

Katerina Varveri, PhD researcher Prof. dr. Tom Scarpas

> , UDelft

Pavement Engineering, Technische Universiteit Delft

UNIKASSEL

ERSITÄT

Prague, 24-25 September 2015

Conférence Européenne des Directeurs des Routes Conference of European Directors of Roads

